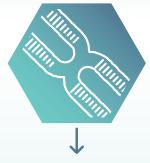
DISCOVER Alpha Mannosidosis

A key symptom for suspicion of rare and ultra-rare metabolic diseases

This document is subject to local medical practice and national rules and regulations. This material is intended for healthcare professional use only.

Table of contents

Lysosomal storage disorders	4
Alpha-mannosidosis and mucopolysaccharidoses	Е
Hallmark symptoms of alpha-mannosidosis and MPS	7
Hearing impairment in alpha-mannosidosis and MPS	8
Hearing impairment is an important early manifestation of alpha-mannosidosis and MPS	<u>C</u>
Diagnostic algorithm for alpha-mannosidosis	10
The importance of multidisciplinary care	. 12
Diagnostic tests for alpha-mannosidosis	13
Genetic testing for hearing loss	14


Lysosomal storage disorders

Alpha-mannosidosis (AM)

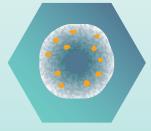
Mucopolysaccharidoses (MPS)

Mutations in...

MAN2B1, alpha-mannosidase³

One of 11 enzymes breaking down sugar chains²

Cellular (lysosomal) build up of...


Mannose-rich oligosaccharides³

Glycosaminoglycans (also known as mucopolysaccharides)²

Causing...

Progressive, multisystemic, cellular damage

Progressive, multisystemic, cellular damage¹ Mucopolysaccharidoses and alpha-mannosidosis belong to the larger group termed 'lysosomal storage disorders' – conditions in which large numbers of molecules that normally break down inside lysosomes instead accumulate in harmful amounts in the body's cells and tissues.^{1,2}

Alpha-mannosidosis

- Alpha-mannosidosis is a rare lysosomal storage disorder caused by the deficiency of alpha-mannosidase^{2,3}
- Alpha-mannosidosis is caused by a mutation in MAN2B1, encoding lysosomal alpha-mannosidase. Without alpha-mannosidase, N-linked oligosaccharides progressively accumulate in lysosomes of all tissues³
- This results in impaired cellular function and apoptosis³

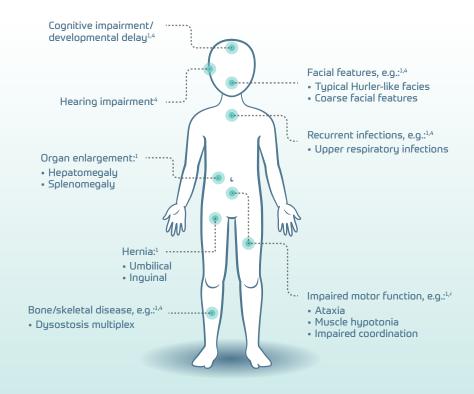
Mucopolysaccharidoses

- Mucopolysaccharidoses are a group of rare lysosomal storage disorders caused by the absence or malfunctioning of enzymes that break down glycosaminoglycans (formerly known as mucopolysaccharides)²
- People with a mucopolysaccharidosis disorder have a deficiency in one of the 11 enzymes required to break down these sugar chains, resulting in build-up in cells (e.g., skin, cartilage, vascular tissue, liver, spleen)²
- This results in progressive cellular damage^{1,2}

Alpha-mannosidosis and MPS

The presentation of alpha-mannosidosis and MPS diseases is heterogeneous; early clinical manifestations can be non-specific and similar to other common conditions. Symptom overlap leads to a wide variety of differential diagnoses, causing potential delay in patients receiving a specific diagnosis and treatment.^{1,2}

The clinical characteristics of patients with various lysosomal storage disorders were evaluated using the medical records of specifically diagnosed individuals aged 1–70 years (N=188).


 This study showed a high degree of overlap between the clinical signs of alpha-mannosidosis and MPS, particularly Type I and Type II

Disease	No.	Delay in diagnosis	Clinical signs										
		Mean, years	Н	S	С	0	R	N	RE	HE	НМ	OI	HY
MPS Type I	7	5.54±5.2	+	+	+	+	+	±	-	+	-	+	+
MPS Type II	23	2.9±2.88	+	+	+	+	+	±	-	+	-	+	+
MPS Type III	8	3.81±3.55	+	+	+	+	+	+	-	+	-	+	+
MPS Type IV	6	3.2±2.67	+	+	+	+	+	-	-	+	-	+	+
MPS Type VII	1	11.60	+	+	+	+	+	+	-	+	-	+	+
Alpha- mannosidosis	2	9.62±9.72	+	+	+	+	+	±	-	+	-	+	+

Adapted from Alkhzouz C, et al. 2021.1

Hallmark symptoms of alpha-mannosidosis and MPS

Patients with lysosomal storage disorders are often asymptomatic at birth – the combination of particular signs and symptoms, especially early manifestations, should prompt suspicion of alpha-mannosidosis or MPS:^{1,4}

Two key symptoms for differentiating a person with MPS from a person with alpha-mannosidosis are short stature and contractures – those with MPS present with these, while those with alpha-mannosidosis likely do not.⁴

Hearing impairment in alpha-mannosidosis and MPS

Patients with alpha-mannosidosis and MPS can present with any type of hearing impairment (sensorineural, conductive or mixed)⁵⁻⁷

- In alpha-mannosidosis, patients are primarily diagnosed with sensorineural hearing impairment but can also experience the mixed or conductive forms⁵
- In MPS, patients primarily present with conductive hearing impairment but many patients also experience a sensorineural component^{6,7}

In a long-term, observational study following 12 patients with alpha-mannosidosis:⁸

83% 96%

of patients presented with hearing loss
– importantly, this was not progressive
but congenital, with patients requiring
audiological management from birth.⁸

of patients demonstrated hearing loss, with over 60% classed with at least a moderate degree of loss.⁷

In a descriptive, cross-sectional study of 53 patients with mucopolysaccharidosis:*7

charidosis:*⁷

Hearing impairment is an important early manifestation of alpha-mannosidosis and MPS^{4-6,9}

Clinical suspicion of a lysosomal storage disorder should be triggered by particular clusters of signs and symptoms that are unlikely to appear in an unaffected child, but that often occur together in a child with alpha-mannosidosis or MPS^{1,4}

Suspect alpha-mannosidosis or MPS when you see:

Hearing impairment^{6,8–10}

Hepatomegaly^{6,8,10}

Learning/cognitive difficulties^{8–10}

Hernia (inguinal or umbilical)^{6,8,10}

Coarse facial features^{6,8–10}

Respiratory disorders^{6,9}

Motor disturbances/ataxia^{8,10}

Bone abnormalities^{6,8–10}

Recurrent infections^{6,8–10}

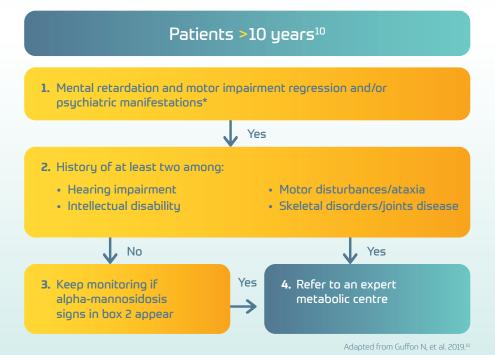
For example:

 In case reports from Lehalle and colleagues (2019), 7 individuals were referred to clinical geneticists for etiologic exploration of syndromic hearing loss, associated with moderate learning disabilities. These individuals were subsequently diagnosed with alpha-mannosidosis.⁹

Diagnostic algorithm for alpha-mannosidosis

In 2019, with no internationally recognised guidelines for early diagnosis of alpha-mannosidosis, an international working group of experts met to establish an algorithm to help general practitioners and specialists (metabolic and non-metabolic) achieve early diagnosis and initiate adequate treatment as soon as possible.¹⁰

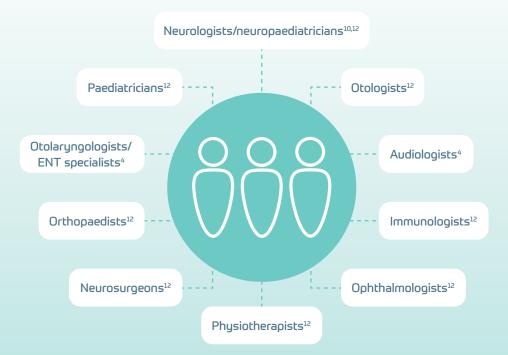
This guideline recognises **hearing loss** as one of the most prominent symptoms for the suspicion of alpha-mannosidosis in both very young (\leq 10 years old) and older patients (over 10 years old).¹⁰


Patients ≤10 years¹⁰ 1. Hearing impairment and/or speech delay Yes 2. Plus at least two manifestations among: Cognitive delay Facial features (can be milder) Motor disturbances/ than MPS) impaired balance No Yes Yes 3. Keep monitoring if 4. Refer to an expert alpha-mannosidosis metabolic centre signs in box 2 appear

Adapted from Guffon N, et al. 2019.10

As an ultra-rare condition, alpha-mannosidosis has a high potential for challenging differential diagnosis, and its incidence may be underestimated in the general population.¹¹

Symptomology, including hearing impairment, should prompt suspicion and testing for alpha-mannosidosis. 10,11


For example:

 In a study analysing enzyme activity and genetics of dried blood spot samples from 1,010 individuals clinically suspicious for MPS, 4 cases were confirmed to have alpha-mannosidosis (a ratio of 1:253 in those with MPS-like phenotype)¹¹

The importance of multidisciplinary care

As alpha-mannosidosis and MPS affect multiple systems, ^{1,4} patients should be managed by a **multidisciplinary team** to achieve diagnosis as early as possible, optimise quality of life and prevent complications related to disease progression. ^{10,12}

The multidisciplinary team could involve, but is not limited to:4,10,12

Diagnostic tests for alpha-mannosidosis

The diagnosis of lysosomal storage disorders relies on a combination of biochemical analyses, with disease confirmation by genetic analysis to identify specific mutations. 10,13

Biochemical assessments

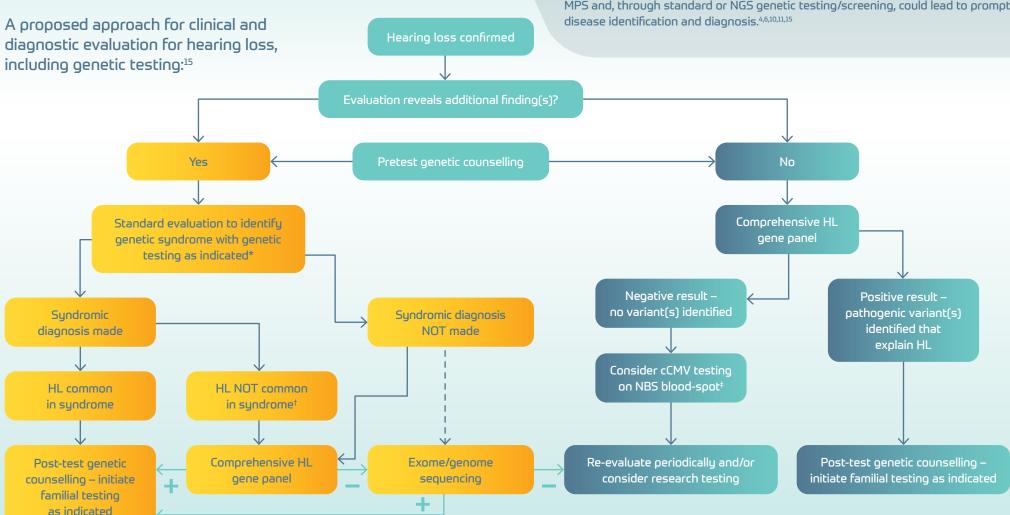
- Peripheral blood examination^{4,14}
 Light or transmission electron
 microscopy demonstrates vacuoles in
 bone marrow smears or lymphocytes
 from peripheral blood in most
 affected individuals
- Oligosaccharides in urine^{4,14}
 Elevated urinary excretion of mannose-rich oligosaccharides can be demonstrated by thin-layer chromatography or by HPLC
- Alpha-mannosidase enzyme activity assay (most reliable method)

Fluorometric assays using leukocytes or other nucleated cells¹⁴ and MS/MS analysis of dried blood spots can be used to determine alpha-mannosidase activity levels¹¹

Genetic testing

- Molecular testing of the patient and their parents should be performed as a confirmatory step and for family investigations^{4,10}
- If gene panels are used in the diagnostic process, it is important that alpha-mannosidosis is included in screening panels for diseaserelevant manifestations¹⁰

Genetic testing for hearing loss


Hearing loss is a common and complex condition that can occur at any age, can be inherited or acquired, and features in a wide variety of disease presentations. More than 400 genetic syndromes include hearing loss as a feature, with hearing loss transmitted as an autosomal recessive, autosomal dominant, X-linked or matrilineal trait.15

Hearing loss is an important early manifestation of both alpha-mannosidosis and MPS and, through standard or NGS genetic testing/screening, could lead to prompt disease identification and diagnosis. 4,6,10,11,15

Investigations for alpha-mannosidosis and MPS should be included in

high-risk population screening programmes, especially hearing panels,

to support early disease identification, diagnosis and treatment^{4,11}

Adapted from Li MM, et al. 2022.15

The symbol + indicates positive. The symbol – indicates negative. 15

^{*}Genetic testing could include single-gene tests, multigene panels, chromosome analysis, or microarray depending on clinical findings.15 tlf genetic syndrome identified is not typically associated with HL, proceed to evaluate for secondary cause of HL.

^{*}US state of birth may screen newborns for cCMV.15

cCMV = congenital cutomegalovirus; HL = hearing loss; MPS = mucopolusaccharidosis; NBS = newborn screening; NGS = next-generation sequencing.

References

- 1. Alkhzouz C, et al. Med Pharm Rep 2021;94(suppl 1):S43–S46.
- 2. Sun A. Ann *Transl Med* 2018;6(24):476–490.
- 3. Borgwardt L, et al. Orphanet J Rare Dis 2015;10:70.
- Malm D and Nilssen Ø. Alpha-mannosidosis. 2001 [Updated 2019].
 In: Adam MP, et al, editors. GeneReviews[®] [Internet].
- 5. Iwanicka-Pronicka K, et al. Int J Pediatr Otorhinolaryngol 2023:169:111556.
- 6. Bianchi PM, et al. Ital J Pediatr 2018;44(Suppl 2):127.
- 7. Silveira MRMD, et al. Clinics (Sao Paulo) 2018;73:e523.
- 8. Lipiński P, et al. Mol Genet Metab Rep 2022;30:100826.
- 9. Lehalle D, et al. Am J Med Genet A 2019;179(9):1756-1763.
- **10.** Guffon N, et al. *Mol Genet Metab* 2019;126(4):470–474.
- 11. Wiesinger T, et al. Mol Genet Metab 2020;130(2):149-152.
- 12. Borgwardt L, et al. Pediatr Endocrinol Rev 2014;12(Suppl 1):185-191.
- 13. Parenti G, et al. EMBO Mol Med 2021;13:e12836.
- 14. Malm D and Nilssen Ø. Orphanet J Rare Dis 2008;3:21.
- 15. Li MM, et al. Genet Med 2022;24(7):1392-1406.

Chiesi Pharma AB Klara Norra kyrkogata 34, 111 22 Stockholm, Telefon +46 8 753 35 20 infonordic@chiesi.com chiesipharma.se | chiesipharma.dk | chiesi.no | chiesi.fi

